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Abstract

To function in mobile computing environments. distributed file systems must cope with networks that are slow,
intermittent, or both. Intermittence vitiates the effectiveness of callback-based cache coherence schemes in reducing
client-server communication, because clients must validate files when connections are reestablished. In this paper we
show how maintaining cache coherence at a large granularity alleviates this problem. We report on the implementation
and performance of large granularity cache coherence for the Coda File System. Our measurements confirm the value
of this technique. At 9.6 Kbps. this technique takes only 4 - 20% of the time required by two other strategies to validate
the cache for a sample of Coda users. Even at this speed, the network is effectively eliminated as the bottleneck for
cache validation.
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(ARPA) under contract number FI9628-93-C-0193. Support also came from IBM Corporatioin. Digital Equipment Corporation.
Intel Corporation, and Bellcore.

The views and conclusions contained in this document are those of the authors and should not he interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of AFMC, ARPA. IBM. DEC. Intel. Bellcore. or the
U. S. Government.
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1 Introduction

Callback-based cache coherence 14, I] Oin distributed file systems has proven to be invaluable for preserving scalability
while maintaining a high degree of consistency. This technique is based on the implicit assumption that the network
is fast and reliable. Unfortunately, this assumption is often violated in mobile computing environments. Network
communication in those environments is often slow and intermittent.

Instead of requiring a client to check the validity of a file on each access, a callback-based scheme places greater
responsibility on the server. When a client caches a file from a server, the server promises to notify it if the file changes.This promise is called a callback. An invalidation message is called a callback break. If a client receives a callback

break for a file, it discards the cached copy ana i--fetches it when it is next referenced.

When a client with callbacks encounters a network failure, it must consider its cached files suspect because it

can no longer depend on the server to notify it of updates. Upon repair of the failure, the client must validate cached
files before use. Consequently. as failures become more frequent, the effectiveness of a callback-based scheme in
reducing validation traffic decreases. In the worst case, client behavior may degenerate to contacting the server on
every reference. This problem is exacerbated in systems that use anticipatory caching strategies such as hoanring to
prepare for failures [I. 51. In these systems, validation traffic is proportional not just to the file working set, but to
the larger resident set. The more diligent the preparation for failures, the larger the resident set. The impact of this
problem increases as network bandwidth becomes precious.

We can address this problem without weakening consistency by increasing the granularity at which cache
coherence is maintained. This makes validation more efficient, allowing clients to recover from failures more quickly.
Taken to an extreme, this idea would require maintaining a version stamp and callback on the entire file system. If
the version stamp remains unchanged after a failure, the client can be confident that no files have been updated on the
server. A callback on the entire file system is a very strong statement - it means every file cached at the client is
valid. However a callback break on the file system conveys little information - anything in the file system could have
changed. whether cached at the client or not. A practical implementation of this idea requires a choice of granularity
that balances speed of validation with precision of invalidation.

In this paper we report on the implementation and performance evaluation of large granularity cache coherence
in the Coda file system [10]. Our results show that large granularity cache coherence is well-suited for a significant
fraction of what Coda users typically cache. At 9.6 Kbps, this technique takes only 4 - 20% of the time required by
two other strategies to validate the cache. Effectively, this technique eliminates the network as the bottleneck lfr cache
validation. At higher bandwidths, the value of this technique diminishes, but it is always at least as good as the other
strategies.

The paper begins by introducing key aspects of Coda. Then we describe the operation of the system with
multiple granularities. Details concerning the actual implementation are presented in Section 4. Finally we describe
the current status of our system and evaluate its performance.

2 Coda File System

Coda is a descendant of AFS-21 [41 that has high data availability as its main goal. Like AFS. it provides a single.
shared, location-transparent name space, and maintains cache coherence using callbacks. Files are stored in voluies
[ I l1, each forming a partial subtree of the name space. Volumes are administrative units, typically created for individual
users or projects. A user-level process called Venus manages a file cache on the local disk of each client. Venus makes
requests of servers through the Vice interface using remote procedure calls (RPC). Files are identified by lids, which
are 96 bits long. The first 32 bits of the fid are the volume identifier.

Coda uses two strategies to achieve high data availability: server replication and disconnected operation. Server
replication allows volumes to be stored at a group of servers called the volume storage group (VSG). At any time.
the subset of those servers available is called the accessible volume storage group (AVSG). When making requests.
clients contact all servers in the AVSG (though data is fetched from only one), and all servers maintain callbacks for
objects cached from the VSG. If an AVSG grows, clients drop callbacks for objects stored at that VSG. because the
newly available server may contain more recent data. Further details on server replication may be found in I 101.

' AFS has evolved since the version from which Coda was derived, which was AFS-2. The currently deployed version is AFS-3. Unless
qualified, the term AlS applies to both versions.



Disconnected operation arises when the AVSG becomes empty. To prepare for disconnection, users may hoard

data in the cache by providing a prioritized list of files called the hoard database, or HDB. Venus combines hoard

database entries with LRU information as in traditional caching schemes to implement a cache management policy that

addresses both performance and availability concerns. Periodically, Venus walks the cache to ensure that the highest

priority items in the HDB are cached and consistent with the AVSG. Hoard walks may also be requested explicitly by

the user. If an object in the HDB is invalidated, it is re-fetched on the next reference or during the next hoard walk.
whichever comes first. Hoard walks can create bursty network traffic. A hoard walk after an AVSG grows results in a
validation request for every cached object from that VSG. More details on hoarding and disconnected operation may

be found in [5].

3 Protocol Description

At how many granularities should cache coherence be maintained'? In principle there can be many levels. An
obvious mapping onto a Unix file name space would suggest a hierarchy of granularities. But the desire for a simple

implementation led us to use just two: files-2 and volumes. Volumes are attractive as units of coherence because the,

tend to represent groups of files that are logically related and hence possess similar update characteristics.

When a client maintains coherence on files, it must validate them before use when the AVSG has grown.
This approach is based on the assumption that the newly available server has rendered some file in the cache stale.
necessitating a check of each one. As failures become more frequent, the price of suspicion increases. Increasing the
granularity of coherence allows a client to summarize the contents of its cache for the purpose of validation. This
approach is more optimistic, in that it assumes there are sets of cached files that have not changed during the failure.

To summarize cache state by volume, servers maintain version stamps for each volume they store. The version
stamp for a volume is incremented whenever an object in the volume is updated. A client caches the version stamp.
establishing a callback for the volume. When the AVSG grows, the client validates the files in a volume by sending its
version stamp to the server. If the stamps match, all of the client's cached data from the volume is valid. The server
grants a callback for the volume to allow the client to read the cached files without any additional communication. If
the validation fails the client reverts to file callbacks.

We expect maintaining coherence on volumes to be beneficial for collections owned by the primary user of a

client, and for collections that don't change frequently or change en masse (e.g., system binaries) 181. In Section 5. we

show that such collections represent a large fraction of the files that users cache. File callbacks are more appropriate
for volumes that are shared or owned by users other than the primary user of a client.

Of course, the client must ensure that version stamps are consistent with the data they represent. and it must
handle updates from other clients, which manifest themselves as callback breaks. We discuss these issues further in
the remainder of this section.

3.1 Obtaining Callbacks

A client caches a volume version stamp to prepare for the next failure. If a client presents an up-to-date stamp after a
failure, it is granted a callback on the volume. The volume callback is a substitute for file callbacks on all the tiles in
that volume. The callback is actually on the version stamp. It means the client has files corresponding to the version
of the volume designated by the value of the stamp.

Before obtaining a volume version stamp, we require all files in the cache from that volume to be valid and
have callbacks. This ensures the files at the client correspond to the version stamp it receives. Since validating the
files could be expensive, the client should employ a policy that balances this cost with the expected value of having

a volume version stamp in case of a failure. We discuss policy further in Section 4.3. For volume callbacks to be
effective, there should be more than one file cached from the volume.

If the client holds a volume callback and fetches a new file, the server establishes a tile callback for the new file.

This is not necessary for correctness, but it is useful for performance. Although one could imagine not establishing the
file callback to conserve server memory, granting the file callback in this case requires no additional network traffic.
and gives the client something to fall back on should the volume callback be broken.

2 In this paper, we use the term file to refer to single objects in the file system, including directories and symbolic links.



3.2 Handling Callback Breaks

When a file is updated by a remote client, the server breaks callbacks to all other clients holding a callback for that file
or its volume. Ifa client holds callbacks on both the file and the volume, the server breaks the callback on the file. The
client interprets this as a callback break on the volume as well, and erases its version stamp. Note that if a client holds
a volume callback, it will receive a callback break even if the updated file is not in its cache. This isjal•se shring, and
if frequent, may indicate that the granularity of cache coherence is too large for that volume. The client should not
blindly reestablish the callback when it is broken, because updates exhibit temporal locality (2, 91. Not only would
this be a waste of bandwidth, but it would also harm scalability. The client's policy should take this into account when
determining whether the volume callback should be reestablished.

The presence of both volume and file callbacks means clients must decide what kind of callback to obtain when
one is broken. Suppose a client validates a version stamp for a volume, and it receives a volume callback. At this point
it has no file callbacks. If the volume callback is broken, the client must validate its cached files from that volume
before it can reestablish the volume callback. In terms of network usage, this is equivalent to recovery from a failure
without volume callbacks. In effect, the client has delayed validation of individual files.

In the situation above one might imagine obtaining file callbacks in the background in case the volume callLdCk
is broken. This eager strategy assumes a remote update will occur before the next failure. However. this defeats the
purpose of obtaining a volume callback. Instead, we employ a lazy strategy, obtaining file callbacks only if the volume
callback is actually broken. If no remote updates occur between failures, we have saved the network bandwidth and
server memory that would have been required to validate and obtain file callbacks.

4 Implementation

We layered volume callbacks on the existing callback mechanism as much as possible. Code changes were required
in the Vice interface, the server, and Venus. We discuss these changes in the following subsections.

4.1 Vice Interface

We added two new calls to the Vice interface that manipulate version stamps, which were already being maintained
by each server for replication. The first new call is ViceGetVolVS, which takes a volume identifier, and returns a
version stamp and a flag indicating whether or not a callback has been established for the volume.

ViceGetVolVS(IN Volumeld Vid,
OUT RPC2_Integer VS,
OUT CallBackStatus CBStatus);

The second call, ViceValidateVols, takes a list of volume identifiers and version stamps and returns a
code for each indicating if it is valid, and if so. whether a callback has been established for the volume. The structure
RPC2_CountedBS consists of a length field and a sequence of bytes.

ViceValidateVols(
IN ViceVolumeIdStruct VidsH[]
IN RPC2_CountedBS VS,
OUT RPC2_CountedBS VFlagBS);

Besides the two new Vice calls, there are also new parameters to existing calls that perform updates (mkdir,

rename, etc.).

4.2 Server side

Server code is required to support the new Vice RPCs. and volume callbacks themselves. We added about 4(X) lines
of code to the server, which consists of approximately 14,5(X) lines of code excluding headers and libraries. Most
of the changes involved supporting the new RPCs (200 lines) and debugging and printing statistics (150 lines). The
remainder of the changes were for gathering statistics.



We minimized changes to data structures and code involving callbacks by designating an unused tid ( (Vol umeld).0.0)

to represent an entire volume. We modified the callback break routine to break callbacks not only for a file, but also

for the vr" .ne that contains it.

Updates change the volume version stamp, whether they are made remotely, or by a local client. When a client

updates a file, it receives a status block containing the file's new version information and attributes. The status block is

shown in Figure 1. Similarly, the client must be able to observe the effects of its updates on the volume version stamp,

without receiving callback breaks or sending additional messages.

We considered two approaches for updating the client's version stamp when it performs an update - having

the client compute the new stamp, or having the server compute and return it. The advantage of having the client

compute the new stamp is no additional changes need to be made to the Vice interface. Unfortunately, since the server
must maintain version stamps anyway, this approach duplicates a good deal of code, and is more difficult to test and
maintain.

We chose to have the server compute and return the new version stamp. We have added three parameters to
Vice calls that involve updates:

"* the old version stamps
"* the new version stamp
"* the callback status

When a client performs an update. it sends its copy of the volume version stamp to the server along with the
other parameters for the operation. If the client's stamp is current, the server returns the new stamp and a callback for

the volume. If it is not, the server returns a zero stamp, and no callback. If the client does not have a stamp. or does
not wish to obtain a volume callback, it simply sends a zero stamp. This is guaranteed never to match at the server.

This process is complicated by concurrency control. Files involved in an update are locked for the duration
of the operation. For performance reasons, the server cannot lock a volume for the entire duration of an update.

Therefore, it is possible for updates to different objects in a volume to be interleaved. To detect this, the server updates
the client's version stamp along with its own, and checks for a match at the end of the call.

There are operations other than file updates that change volume version stamps. We made a few additional

changes to two server libraries to ensure callbacks would be broken when these operations occurred. One of the
libraries supports debugging; the other is part of the resolution subsystem 17].

Our implementation was complicated by a number of race conditions, pertaining to server replication, that

manifested themselves during initial testing. These race conditions were present in the original AFS-2 code from
which Coda is derived, but were triggered when clients eagerly acquired volume callbacks.

For example, the callback processing code is structured to prevent a server from adding a callback for a tid while
breaking a callback for that fid. Callbacks are maintained at all servers in the AVSG. The race condition occurs when

a client receives callback breaks from a subset of the AVSG and immediately tries to reestablish its volume callback.
This request is sent to all the servers in the AVSG; this may include ones still breaking the callback. This used to cause

the servers to crash. We fixed this by returning the callback status, and having the server not establish callbacks in this
situation.

4.3 Client side

Most of the logic for supporting volume callbacks is in Venus. In addition to using the new RPCs, Venus must cope
with replication, and decide when using volume callbacks is appropriate. The changes represented an addition of 7(X)
lines to about 36,000 lines of code excluding headers and libraries.

The implementation of Venus is layered with respect to files and volumes. The changes for volume callbacks are
concentrated in the volume layer, leaving the heart of Venus unchanged. We augmented the volume data structure to
store a volume version stamp, the status of a volume callback, and summary statistics such as the number of callbacks
established, broken, and cleared.

There. are a number of background processes within Venus that run periodically. The hoard daemon. for
example, runs a hoard walk every ten minutes. The volume daemon checks each volume to effect state changes every



typedef RPC2.Struct

I
RPC2_Unsigned InterfaceVersion;
ViceDataType VnodeType;
RPC2_Integer LinkCount;
RPC2_Unsigned Length;
FileVersion DataVersion;
ViceVersionVector VV;
Date Date;
UserId Author;
UserId Owner;
CallBackStatus CallBack;
Rights MyAccess;
Rights AnyAccess;
RPC2-Unsigned Mode;
Vnodeld vparent;
Unique uparent;
} ViceStatus;

Figure 1: Vice Status Block

This figure shows the Vice status block, which is returned for the objects of most Vice calls. It includes version information for the
object. whether or not the server has extended a callback promise for it, and the access rights of the requesting user and the
anonymous user System:AnyuseE

five seconds. Our code is structured such that volume version stamps are likely to be obtained or validated in the
background by one of these daemons. This greatly reduces the chance that the cost of these tasks is incurred on demand
during a user request.

4.3.1 Policy

As mentioned in Section 3, Venus should have some policy to determine when to obtain a volume callback. The
optimal policy would obtain a volume callback only if a failure was going to occur and be repaired before the next
remote update. Otherwise, either the volume callback would be broken, or the next validation would fail.

One could invent a variety of policies to approximate the optimal one. We decided to use a simple policy, in
which Venus obtains volume callbacks only during hoard walks. We chose this policy for several reasons.

1. Volume version stamps are intended to be useful in preparing for failures. This is synonymous with the purpose
of hoarding.

2. During a hoard walk, cached files are validated anyway. The additional overhead of obtaining a version stamp
for each volume is low.

3. This strategy satisfies our scalability concerns. If a volume callback is broken, the client will not request another
one until the next hoard walk.

4. Since hoard walks are periodic, the window of vulnerability to failures is bounded. For a client to lose the
opportunity to validate files by volume, a remote update would have to be followed by a failure within one hoard
walk interval (typically ten minutes). In this case, the client is no worse off than it -'as before the use of volume
callbacks.

This policy also copes nicely with voluntary disconnections, when a user deliberately removes a laptop computer
from the network. In our environment, many users have both desktop and laptop computers. While at work. they work
from the desktop computers, leaving their laptops connected nearby. Some users modify files hoarded on their laptops
from their desktop. Before disconnecting, they run a hoard walk on the laptop to fetch the files they just changed



from the desktop. While connected, the laptop observes the remote updates to volumes that are referenced in its hoard
database. These volumes are prime candidates for volume callbacks. A policy that becomes more conservative about
obtaining volume callbacks when remote updates occur would be unlikely to obtain them in this case. In contrast, our
policy takes advantage of explicit hoard walks as hints of imminent disconnection.

4.3.2 Access Rights

Directories in Coda have access lists associated with them that specify the operations that a user or group ot users
may perform on them. Venus caches access information to perform access checking locally. It obtains the information
from the Vice status block, which is a result of most Vice calls. The access cache for a directory consists of a fixed
number of entries containing a user identifier and that user's rights on the directory. Entries are considered valid when
they are installed from the Vice status block. They are considered invalid (or suspect) if the object is invalidated, the
user's authentication tokens expire, or if the AVSG grows.

When files are validated in groups, such as by volume, access information is not returned for the individual
files. To avoid sending messages to the server to check access information, Venus must use the access cache more
aggressively than it did in the past. If an object is deemed valid, clearly its access rights have not changed. Venus
now considers entries in the rights cache for a file valid if the file is valid, and the entry corresponds to a user who is
authenticated.

4.3.3 Effects of Replication

Coda's support of replicated volumes affects the client's handling of volume version state in two ways. First. Venus
communicates with the AVSG as a group. sending the same copy of each request to each member of the group. This is
performed by the underlying RPC protocol, which was designed to support remote procedure call to a set of machines
in parallel. Because of this. a validation request must contain the stamps for all the servers in the VSG. Each server
simply checks the one corresponding to it.

Second, Venus must collate multiple responses to its requests. When requesting version stamps. it must store
the stamp for each server that responds. When validating version stamps, all servers must agree that the stamps are
valid before Venus can declare them valid. Similarly, all servers must agree that a callback has been established before
Venus can assume it has a callback on the volume.

5 Status and Evaluation

Servers supporting volume callbacks have been in use for several months. The corresponding Venus is currently in
alpha test, and we expect to release it for production use shortly.

The primary reason for using large granularity cache coherence is to validate a client's cache quickly after a
failure is repaired. In this section, we present measurements of cache validation times for five typical Coda users under
a variety of conditions.

5.1 Experiment Design

The time required to validate a client's cache after a failure is the figure of merit for our experiments. We call this the
recovery time of the cache. Obviously, recovery time depends on the contents of the cache. For the experiments, we
gathered the hoard profiles of five Coda users, summarized in Table I. A hoard profile is the input to a program that
updates the HDB. These profiles are used primarily for laptops. To broaden our study, we deliberately chose users
whose profiles were dissimilar.

We performed the experiments with a single client and server, both fECstation 5000/200s with 32 MB of
memory, running Mach 2.6. The client used a 50 MB Coda file cache. The machines were connected via Ethernet. To
emulate slower networks and inject failures, we used a failure library iinked into Venus and the server. The library
allows packets to be delayed or suppressed according to afilter, which specifies under what conditions the mischief is
to occur. For example, one might request packets to a certain host be dropped with some probability, or delayed as if
the network were a lower speed. Requests to insert and remove filters are issued to the failure package via RPC.

We began each experiment by initializing the hoard database with the profiles for a single user. Then we ran
a hoard walk, and partitioned the client from the server. Once the client detected the failure, we healed the partition,



Number of Files Cached

Volume Tlpe User I User 2 User 3 User 4 User 5
XiI 38 127 133 125 142

TEX 560 158

System 9 6 190 342 689

Cboard 361

Other tools 42 13 13 42

Coda binaries 2 6 4

Coda sources 4 549 6

Kernel sources 24

User I personal 114

User 2 personal 234

User 3 personal 190

User 4 personal 220 6

User 5 personal 537
Other personal 107 4 5 10 1 0

Total files 268 413 1097 1423 1821

Total volumes 7 6 9 II 12

Cache size (MB) 2.4 16.5 9.2 37.3 22.3

Table 1: Contents of Hoard Profiles for Five Coda Users, by Volume

This table characterizes the contents of the hoard profiles for the five Coda users studied in the experiments described in Scction
5. 1. Entries represent the number of files hoarded from each volume by each user.

The system volume contains system binaries, utilities, and include files. Cboard is a project volume for a calendar program: its
maintainer is user 5. "Other tools" refers to five volumes containing utilities such as GNU-Emacs and less. The "*Coda binaries'"
volume contains Coda-related programs that many users hoard. The "'Coda sources" category is of interest primarily to Coda
developers. It consists of two volumes containing scaffolding for the project tree, libraries, include tiles, and sources. User 4's
personal files are split into a home volume and a volume solely for object files. "'Other personal" is a set of five volumes belonging
to users other than the ones we studied. Two of those volumes contain versions of kermi t that most users hoard, and one
contains a popular window manager.

caused the client to notice the server was up, and immediately ran a hoard walk. We measured the time it took for
Venus to validate its cache entries, from when it noticed the server was up to the end of the hoard walk. We assume
no updates on cached volumes were made to the server by any other client during the failure. Although this is the best
case, we believe it is an important common case in intermittent environments.

5.2 Parameters Explored

We studied recovery times over four network speeds and three validation strategies for each user. The network speeds
were 10 Mb/sec, representing Ethernet, 2 Mb/sec, representing packet radio (such as NCR WaveLanTM): 64 Kb/sec,
representing ISDN, and 9.6 Kb/sec, representing a typical dialup connection. The validation strategies were "NoOpt".
"Batched", and "VCB". The NoOpt strategy validates an object 1-y fetching its status block from the server and
comparing it to the cached copy. This corresponds to the Vnode operation GetAt tr 161. The Batched strategy allows
a group of files to be validated in one RPC. More specifically, in Coda up to 50 rids may be piggybacked with version
information on a GetAttr request. The VCB strategy validates objects by volume using previously cached version
stamps. These are also batched; for these experiments only I RPC is needed to validate the volumes.

Although the current production version of Coda uses the Batched strategy, we measured the NoOpt strategy



F

Network Validation Recovery Time in Seconds Relative

Speed Strategy User I User 2 User 3 User 4 User 5 Times

NoOpt 6.8 (.5) 9.9 (.s8 20.9 (.6) 31.5 c5) 46.0 (1. 100.0%

IOMb/s Batched 2.5 (.5) 3.6 (.5) 8.2 c.5 11.0 (.0) 19.0 (8) 38.5%

VCB 2.5 (.5) 3.5 c 1) 7.4 (_5) 10.0(1.3) 17.5 (s) 35.5%

NoOpt 6.5 (.5) 11.0(2.6) 21.3 (1.2) 32.0 (5) 46.0 (9) I W.0(4

2Mb/s Batched 3.0 co) 4.1 (.4) 9.4 (.5) 12.6 05) 21.0 (8) 42.9%

VCB 2.3 (.5) 3.7 (.5) 7.3 (.5) 9.4 (51 18.1 ('s) 34.9%

NoOpt 12.8 (0.4) 17.5 o5) 40.9 (1.4) 63.6 (1.6) 87.5 Q2 2 W( 1).0%

64Kb/s Batched 5.4 (.5) 7.2 o)5 16.9 (.4) 24.3 (5) 36.5 (9) 40.6%

VCB 2.3 (.1) 4.0 (.5) 7.4 (.5) 9.6 (5) 17.8 9) 18.5%

NoOpt 67.8 (1.4) 102.8 (9) 226.1 (2.2) 342.4 (4.0) 453.8(97) I().0%

9.6Kb/s Batched 23.8 (2.8) 31.4 (2.5) 80.9 (15.8) 103.1 (9.7) 136.3(871 31.5'k

VCB 4.8 (.5) 5.3 (.5) 8.9 (.6) 11.3 (5) 20.3 (9( 4.2%

Table 2: Cache Recovery Time (Seconds)

This table presents the time in seconds needed by a client to validate cached files when it discovers a server is up. The -ache
contents are determined by the hoard profiles for each c (the live users. The rightmost column is the average reduction in
validation time compared to NoOpt for each of the other two strategies. The reduction is given as a percentage. and is calculated as
(100 x tother) / tNoOpt. These results are conservative in a number of respects. as explained in Section 5.5.

ilhe experiments were conducted with DECstation 5000/200s as the client and server, and volumes stored at one server.
Measurements were taken over an Ethernet: for the three slower speeds, an emulator was used to delay packets. Each eniry is the
mean and standard deviation (in parentheses) of the most consistent eight trials from a set of ten.

for two reasons. First, it allows our results to be compared to file systems that do not batch validations, such as AFS.
Second. even though batching takes less time and bandwidth at any speed than NoOpt. it has some disadvantages at low
bandwidth. Batching can result in large request packets - nearly 3KB in Coda. These requests stress the underlying
RPC protocol, because retransmissions at low bandwidth can starve other requests. and cause Venus to declare servers
down. Indeed, we experienced such failures while conducting our experiments! It may be more appropriate to use
a smaller batching factor for low bandwidth networks. Latency is also significantly affected by request size when
bandwidth is low. Currently a demand (user) request for one file will cause a batch validation of up to 50 files, which
incurs additional latency that could be deferred to background processes.

Batching of volume validations does not have as great an impact on the system as batching of file validations
because clients have information on many fewer volumes than files, and volume identifiers and version stamps are
much smaller than their counterparts for files.

5.3 Results

Our results confirm that VCB compensates successfudly for the reduction in bandwidth. Table 2 presents our obser-
vations. For all users and networks, recovery times are smallest using VCB, followed by the Batched and NoOpt
strategies. There is variation across users proportional to the number of files cached. The improvement increases as
bandwidth decreases. At 9.6 Kb/sec, where VCB is likely to be most important. recovery time takes only 4-7% of
the time required by NoOpt. and 11-20% of the time required by batching. At higher bandwidths, the value of VCB
diminishes, but it is always at least as good as the other two strategies. A glance at Table 2 reveals that the results for
VCB at 9.6 Kb/sec and lOMb/sec are not significantly different.
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Figure 2: Daily Update Frequency of Volumes

This figure shows how often volumes used in our experiments are updated on a daily basis. The data was gathered from daily
backup logs trom January through March 1994, Each bar indicates the percentage ot the days in the period during which at least
one object in the volume was updated. We show volumes in the "Other users", 5Other toos and "Coda sources" categones
separately, as well as both of User 4"s personal volumes.

An unexpected result was that the recovery time using VCB on a slow network was not constant over all users.
We expected the bottleneck in this case would be te network. Since only one RPC was required to validate the
volumes, we thought the recovery times would be similar. We observed recovery times proportional to the number of
biles cached, indicating the bottleneck is Venus, Most of its time is spent on two tasks: marking cached objects suspect
when the server appears up, and performing the hoard walk, which involves iterating through all of the objects in the
cache to ensure they are valid.

The number of callbacks at the server can be derived from Table I trom the number of objects and volumes
each user hoards. In these experiments, clients using the Batched or NoOpt strategies obtain callbacks tot each file
validated. Clients using VCB obtain calbacks only for the volumes they validated The number of callbacks ohtained
by clients using VCB is less than 3% of the number obtained by the other two strategies.

The results presented are for the case in which all validations suc.eed Over longer periods, or for more active
volumes, some validations will fail because of updates at the server. As long as some validations succeed. VCB will
still perform better than the other strategies. The only case for which VCB is worse is if every volume validation fails.

and then it is worse by I RPC. Considering what users hoard, this case is unlikely.

The volumes most likely to change are the personal or project volumes of other users, as shown in Figure 2. All
of the users we studied hoard files from other user volumes; however, in all but one case they represent less than I%
of the total files. Therefore validating these files individually if necessary does not have a large impact on recovery
time. Further, some user volumes were inactive during the period shown in Figure 2.

The next most frequently changed set of volumes are the Coda and kernel source volumes, which are shared by
up to six project members. These change relatively slowly; Figure 2 indicates that the most active of these volumes.
the Coda source area, w,' completely unchanged for half of the days in the period we studied. Since update traffic is
bursty, the results from Figure 2 are conservative, especially for intermittent environments. Thus we are confident that
the benefits listed in Table 2 are realistic.



Packet Time (seconds)
Size Emulated Real
60 .11 (.o0) .33 (.01)
260 .43 (.03) .76 (.o4)
560 .96 (.o0 1.4 (.o)
1060 1.8 (.o) 3.3 (2.6)
2060 3.5 .0) 4.6 (.28)
3060 5.2 (.0) 6.6 (0)

4060 7.9 (m.9) 8.7 (.0)

Table 3: Emulated vs. Real RPC at 9.6 Kbps

This (able compares the round trip time for an RPC request and response of the same size. using the network emulator set to 9.6
Kbps over an Ethernet, and using a dialup SLIP link nominally rated at 9.6 Kbps. The experiments were conducted using an
i386-based laptop as the client and a DECstation 5000/200 as the server. RPC packet headers are 60 bytes long: the first line gives
the times for a null RPC. We show the mean and standard deviation for the most consistent eight trials from a set of ten. The large
standard deviations for 4060 bytes (emulated) and 1060 bytes (real) were due to retransmissions dunng one or more runs.

5.4 Overhead

Of course, fast validation isn't free. There are several sources of network overhead caused by volume callbacks -
obtaining callbacks, breaking callbacks, and validating volumes. Obtaining a callback on a volume requires validation
of every cached file in the volume. Since this is already done by hoard walks, and the number of volumes is small
compared to the number of files cached by clients, the additional overhead to obtain the volume callback is low.

In the worst case, all the volumes from which a client has cached files are being updated actively. The client
then loses every volume callback it obtains, and its volume validations fail. If the sharing is false, the effort expended
to get volume callbacks is wasted. Fortunately, callback requests and breaks are small messages. well under I0) bytes.
Since these occur only once in every hoard walk period, the network overhead is still low. The failed volume validation
costs one extra RPC. For volumes from which many files are cached, the cost of validating the files renders that RPC
insignificant. If the sharing is real, the overheao Jue to volume callbacks is likely to be insignificant compared to the
cost of re-fetching the shared data. Overall, the benefits of volume callbacks far outweigh the costs.

5.5 Accuracy of Results

The results in Table 2 understate the benefits of VCB in a number of respects. First, our failure library underestimates
the delay for a given network speed. Emulation is performed by a package which intercepts outgoing packets and
delays them based on the size of the packet, the network speed requested in the filter, and the delays for any packets
queued ahead of the one to be sent. The delay is a simpleminded calculation, and does not take into account overheads
such as UDP and IP header sizes, or IP fragmentation. A comparison of emulated and real times at 9.6Kbps is shown
in Table 3.

Second, we used volumes with only one replica, when most volumes in Coda are triply replicated. Since many
networks do not support multicast, an RPC request to an AVSG with more than one member is currently sent as separate
messages to each member. If the network is the bottleneck, the time required to validate cached files for each of the
strategies in Table 2 will be proportionately larger.

Last, caches typically contain more than what is hoarded. This occurs for several reasons - name space
exploration, objects left over from other tasks, and execution of a task to find files not included by hoard profiles.

E&, h of these effects underestimates the savings due to VCB, especially over low bandwidth networks.

6 Conclusion

This work was motivated by the demands of mobile computing. Large granularity cache coherence is valuable in
that context because it allows a high level of consistency to be preserved even when communication is intermittent
or expensive. But we anticipate that this mechanism will have broader applicability. For example. we expect it to be



valuable in systems such as AFS, where recent measurements indicate over 50% of requests to servers are for fetching
status [121. We conjecture that a significant fraction of these are validation requests for files that once had callbacks
These callbacks may have been lost due to failures or expiry, since AFS-3 callbacks are effectively leases 13).

Another argument for maintaining cache coherence at a large granularity has been put forth independently by
Wang and Anderson [ 131. They proposed maintaining cache coherence on clusters of files, such as subtrees. Their
primary motivation is to reduce server state rather than communication.

Regardless of specific motivation, we are convinced that large granularity cache coherence is a practical and
important technique for distributed computing. Our experience and measurements contirm that it is valuable in
preserving the quality of file access in intermittent networking environments. Large granularity cache coherence costs
little, and offers the potential for big savings.
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